The study of the chemical composition of extracts from Sorbus aucuparia L. leaves and their influence on glucose metabolism and the excretory renal function in rats




European mountain ash (Sorbus aucuparia L.), extract, phenolic compounds, HPLC, hypoglycemic action


The interest in herbal products capable of normalizing carbohydrate and lipid metabolism thus counteracting the “diseases of civilization” grows steadily. Biological activity of these preparations is often mediated by phenolic compounds. In this aspect, the raw material of European mountain ash (Sorbus aucuparia L.) has significant prospects, and its fruit are used in traditional medicine in diabetes.

Aim. To obtain alcohol and ethyl acetate-alcohol extracts from European mountain ash leaves, study their phenolic composition by the HPLC method, determine the effect of the extracts on glucose metabolism in intact rats, as well as evaluate the effect of the most effective extract on lipid metabolism, uric acid metabolism, and the excretory renal function.

Materials and methods. The alcohol soft extract (ASE, extractant – 50 % ethanol) and the ethyl acetate-alcohol soft extract (EAASE, extractant – a mixture of ethyl acetate and 96 % ethanol (8:2) after preliminary extraction of the raw material with chloroform) were obtained from leaves of European mountain ash. Using HPLC (Shimadzu LC20 Prominence chromatograph) the phenolic composition of the extracts was studied. The effect of the extracts (100, 250, 500 mg/kg intragastrically after single administration) on glycemia was determined in intact normoglycemic rats compared to the infusion of bilberry shoots (Vaccinium myrtillus L.) at a dose of 10 ml/kg (1:10). The effect of the extract, which showed the ability to reduce glycemia (ASE at a dose of 500 mg/kg for 6 days), on the content of glucose, uric acid, urea, creatinine, triglycerides and total cholesterol in the blood and on the excretory renal function under the conditions of water diuresis was also studied.

Results. Chlorogenic acid, quercitrin (predominant in EAASE; 11.61 mg/g) and rutin (predominant in ASE; 3.57 mg/g), and in small amounts gallic, neochlorogenic and caffeic acids, catechin and hyperoside were identified in the extracts by HPLC. ASE after single administration at a dose of 250 and 500 mg/kg exerted a statistically significant hypoglycemic effect in normoglycemic rats, exceeding the effect of the infusion of bilberry shoots (10 ml/kg). The effect was also present after administration for 6 days at a dose of 500 mg/kg, which was characterized by the high level of safety, since it caused neither changes in the given indicators of lipid, nitrogen, purine metabolism, nor the shifts of indicators of the excretory renal function.

Conclusions. The data obtained substantiate the expediency of further studies of the extracts from European mountain ash leaves for the development of new drugs or dietary supplements.

Author Biographies

O. V. Tovchiga, National University of Pharmacy

Candidate of Pharmacy (Ph.D.), associate professor of the Department of Pharmacology,

O. M. Markin, National University of Pharmacy

postgraduate student of the Pharmacognosy Department

S. Yu. Shtrygol', National University of Pharmacy

Doctor of Medicine, professor, head of the Department of Pharmacology

O. V. Kryvoruchko, National University of Pharmacy

Doctor of Pharmacy (Dr. habil.), professor of the Pharmacognosy Department


Zheng, Y., Ley, S. H., & Hu, F. B. (2017). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88–98.

Pang, G.-M., Li, F.-X., Yan, Y., Zhang, Y., Kong, L.-L., Zhu, P., … Lu, C. (2019). Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chinese Medical Journal, 132(1), 78–85.

Li, W., Yuan, G., Pan, Y., Wang, C., & Chen, H. (2017). Network Pharmacology Studies on the Bioactive Compounds and Action Mechanisms of Natural Products for the Treatment of Diabetes Mellitus: A Review. Frontiers in Pharmacology, 08, 74.

AL-Ishaq, Abotaleb, Kubatka, Kajo, & Büsselberg. (2019). Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules, 9(9), 430.

Rasouli, H., Hosseini-Ghazvini, S. M.-B., & Khodarahmi, R. (2019). Therapeutic Potentials of the Most Studied Flavonoids: Highlighting Antibacterial and Antidiabetic Functionalities. Studies in Natural Products Chemistry, 85–122.

Kryvoruchko, O. V. (2016). Horobyna. Farmatsevtychna entsyklopediia (3-st, edition). Kyiv: «MORION», 430–431.

Vianna, R., Brault, A., Martineau, L. C., Couture, R., Arnason, J. T., & Haddad, P. S. (2011). In VivoAnti-Diabetic Activity of the Ethanolic Crude Extract ofSorbus decoraC.K.Schneid. (Rosacea): A Medicinal Plant Used by Canadian James BayCree Nations to Treat Symptoms Related to Diabetes. Evidence-Based Complementary and Alternative Medicine, 2011, 1–7.

Jie Wei, Guokun Zhang, Xiao Zhang, Jun Gao, Zhiquan Zhou, Jungang Fan (2016). Polyphenols from sorbus aucuparia ameliorate insulin resistance and metabolic disorders in diabetic mice. Curr Topics Nutr Res, 14(3). 227–234.

Hasbal, G., Yilmaz Ozden, T., & Can, A. (2017). In vitro Antidiabetic Activities of Two Sorbus Species. European Journal of Biology, 76(2), 57–60.

Grussu, D., Stewart, D., & McDougall, G. J. (2011). BerryPolyphenols Inhibit α-Amylasein Vitro: Identifying Active Components in Rowanberry and Raspberry. Journal of Agricultural and Food Chemistry, 59(6), 2324–2331.

Termentzi, A., Alexiou, P., Demopoulos, V. J., Kokkalou, E. (2008). The aldose reductase inhibitory capacity of Sorbus domestica fruit extracts depends on their phenolic content and may be useful for the control of diabetic complications. Pharmazie, 63(9), 693–696.

Olszewska, M. A., Presler, A., & Michel, P. (2012). Profiling of Phenolic Compounds and Antioxidant Activity of Dry Extracts from the Selected Sorbus Species. Molecules, 17(3), 3093–3113.

Olszewska, M. A. (2011). Variation in the phenolic content and in vitro antioxidant activity of Sorbus aucuparia leaf extracts during vegetation. Acta Pol. Pharm., 68(6), 937–944.

Shtrygol’, S. Yu., Tovchiga, O. V., Koiro, O. O., Stepanova, S. I. (2014). Lekarstvennye rasteniia, pochki i obmen mochevoi kisloty : monografiia.Kharkov: «Titul», 424.

15. Derzhavna farmakopeia Ukrainy. (2016). Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv». (2-nd edition). Dopovnennia, 1. Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 360.

Golembiovska, O. I. (2014). Simultaneous determination of flavonoids and phenolic acids in different parts of Prunella vulgaris L. by high-performance liquid chromatography with photodiode array detection. Int. J. Pharmacog. Phytochem, 29(1), 1248–1255.

Stefanov, O. V. (Ed.). (2001). Doklinichni doslidzhennia likarskykh zasobiv. Kyiv: Avitsena, 397–398.

Stepanova, T. A., Mechikova, G. Ia., Tcimbalist, N. A., Morozova, V. E., Pogorelyi, V. E. (2009). Pat. RU 2 418 603 C2, MPK A61K 36/45 (2006.01) A61P 3/10 (2006.01). Primenenie pobegov golubiki v kachestve sredstva, proiavliaiushchego aktivizatciiu pogloshcheniia gliukozy ishemizirovannym mozgom pri lechenii sakharnogo diabeta II tipa.

Tovchiga, O. V. (2017). The effects of goutweed (Aegopodium podagraria L.) preparations on glycemia in intact rats and against the background of metformin. Vìsnik Farmacìï, 2(90), 54–62.

Kamyshnikov, V. S. (2002). Spravochnik po klinichesko-biokhimicheskoi laboratornoi diagnostike. Minsk: «Belarus», 1, 495; 2, 463.

Glantz, S. (1998). Mediko-biologicheskaia statistika. Moscow: «Praktika», 459.

Ivanenko, E. F. (1979). Biokhimiia mozga pri narkoze.Moscow: Med., 44.

Cardoso, A. R., Carvalho, C. R. O., Velloso, L. A., Brenelli, S. L., Saad, M. J. A., & Carvalheira, J. B. C. (2005). Effect of thiopental, pentobarbital and diethyl ether on early steps of insulin action in liver and muscle of the intact rat. Life Sciences, 76(20), 2287–2297.

De Oliveira, J. C., Ludemann Camargo, R., Barella, L. F., Chaves Souto Branco, R., Gravena, C., Grassiolli, S., Torrezan, R., Cezar De Freitas Mathias, P. (2013). Anesthetic-induced transient hyperglycemia and insulin resistance do not depend on the sympathoadrenal axis. Minerva Endocrinol, 38(4), 379–388.

Tovchiga, O. V., Shtrygol’, S. Yu., Kryvoruchko, O. V. (2019). Patent UA 133831 na korysnu model MPK (2006) A61K 36/00 A61K 36/73 (2006.01) A61P 3/10 (2006.01). Likuvalno-profilaktychnyi zasib iz hipohlikemichnoiu diieiu z lystia horobyny zvychainoi.





Pre-clinical studies of new drugs