DOI: https://doi.org/10.24959/cphj.19.1484

In vitro antimicrobial activity of a highly dispersed silica and polyhexamethylene guanidine hydrochloride (PHMG-HC) composite for local infections treatment

A. I. Doroshenko, O. B. Balko, Ye. P. Voronin, A. M. Doroshenko, G. V. Zaychenko

Abstract


The problem of antimicrobial drug resistance can be solved through the development of novel antimicrobial compounds and combination drugs. In order to enhance polyhexamethyleneguanidine hydrochloride (PHMG-HC) therapeutic benefits, a composite (code name CMU-211) of PHMG-HC with a nanoparticle-based sorbent of highly dispersed silica (HDS) was developed.

Aim. To evaluate in vitro antimicrobial activity of highly dispersed silica and PHMG-HC (HDS + PHMG-HC) composite (CMU-211), highly dispersed silica (HDS) suspension (CMU-212), and PHMG-HC solution as a reference against standard test-strains.

Materials and methods. HDS + PHMG-HC composite, HDS suspension, and PHMG-HC solution. Microbial test-strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Klebsiella pneumoniae, and Candida albicans). An antimicrobial activity of substances was studied with broth dilution method in LB liquid medium, minimum inhibitory concentrations (MIC) were obtained.

Results. CMU-211 has been shown to have high activity against C. albicans and S. aureus with a minimum inhibitory concentration (MIC) of 48.83/9.77 μg/mL (HDS/PHMG-HC) and marked effect on E. coli (MIC of 97.66/19.53 μg/mL) and S. enterica (MIC of 195.31/39.06 μg/mL). The relatively low activity of CMU-211 was reported against K. pneumoniae (MIC of 390.63/78.13 μg/mL) and P. aeruginosa (MIC of 195.31/39.06 μg/mL), however, the effect on P. aeruginosa was consistent with the activity of PHMG-HC applied alone. The concentrations of CMU-211 had to be twice as high as the MICs to ensure bactericidal (fungicidal) effect on microorganisms studied, except of S. enterica and K. pneumoniae for which bacteriostatic concentration was also proved to be bactericidal.

Conclusions. These results taken together with previous findings on CMU-211 high sorption activity suggest that the composite has double therapeutic activity and may be beneficial for local infections treatment.

Keywords


Antibacterial; antibiotic resistance; antifungal; polyhexamethyleneguanidine hydrochloride; silica nanoparticles

Full Text:

PDF

References


Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013 Dec;13(12):1057-98.

Gaynes R, Edwards JR. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005 Sep 15;41(6):848-54.

Chambers HF and DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009 Sep;7(9):629–41.

European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017.

Lautenbach E, Metlay JP, Bilker WB, Edelstein PH, Fishman NO. Association between fluoroquinolone resistance and mortality in Escherichia coli and Klebsiella pneumoniae infections: the role of inadequate empirical antimicrobial therapy. Clin Infect Dis. 2005 Oct 1;41(7):923-9.

Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive salmonella infections. Clin Microbiol Rev. 2015 Oct;28(4):901-37.

Zhou Z, Zheng A, Zhong J. Interactions of biocidal guanidine hydrochloride polymer analogs with model membranes: a comparative biophysical study. Acta Biochim Biophys Sin (Shanghai). 2011 Sep;43(9):729-37.

Zhou Z, Wei D, Lu Y. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Biotechnol Appl Biochem. 2015 Mar-Apr;62(2):268-74.

Oulé MK, Azinwi R, Bernier AM, Kablan T, Maupertuis AM, Mauler S, et al. Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol. 2008 Dec;57(Pt 12):1523-8.

Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99(4):703-15.

Ніцак О.В. Дослідження антитоксичних властивостей суспензії високодисперсного кремнезему / О.В. Ніцак // Актуальні проблеми сучасної медицини: 61 міжнародна науково-практична конференція студентів і молодих вчених, 24-26 жовтня 2007: тези доповідей. – Київ, 2007. – С. 247.


GOST Style Citations


  1. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013 Dec;13(12):1057-98.
  2. Gaynes R, Edwards JR. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005 Sep 15;41(6):848-54.
  3. Chambers HF and DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009 Sep;7(9):629–41.
  4. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017.
  5. Lautenbach E, Metlay JP, Bilker WB, Edelstein PH, Fishman NO. Association between fluoroquinolone resistance and mortality in Escherichia coli and Klebsiella pneumoniae infections: the role of inadequate empirical antimicrobial therapy. Clin Infect Dis. 2005 Oct 1;41(7):923-9.
  6. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive salmonella infections. Clin Microbiol Rev. 2015 Oct;28(4):901-37.
  7. Zhou Z, Zheng A, Zhong J. Interactions of biocidal guanidine hydrochloride polymer analogs with model membranes: a comparative biophysical study. Acta Biochim Biophys Sin (Shanghai). 2011 Sep;43(9):729-37.
  8. Zhou Z, Wei D, Lu Y. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Biotechnol Appl Biochem. 2015 Mar-Apr;62(2):268-74.
  9. Oulé MK, Azinwi R, Bernier AM, Kablan T, Maupertuis AM, Mauler S, et al. Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol. 2008 Dec;57(Pt 12):1523-8.

10. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99(4):703-15.

11. Ніцак О.В. Дослідження антитоксичних властивостей суспензії високодисперсного кремнезему / О.В. Ніцак // Актуальні проблеми сучасної медицини: 61 міжнародна науково-практична конференція студентів і молодих вчених, 24-26 жовтня 2007: тези доповідей. – Київ, 2007. – С. 247.

12. Podgorskyi VS, Gvozdiak RI, Skripal IG, et al. [Ukrainian collection of microorganisms. Cultures catalogue]. [Book in Russian]. 2nd ed. Kiev: Naukova Dumka; 2007. 270 p.

13. Грегірчак Н. Ефективність дії комбінованих дезінфектантів / Н. Грегірчак, Т. Лупина, Т. Мордич // Ukrainian food journal. - 2013. - Vol. 2, Issue 3. - С. 366-373.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Klìn. farm.

ISSN 2518-1572 (Online), ISSN 1562-725X (Print)