Biologically active substances as nanostructures: a biochemical aspect

Authors

  • I. S. Chekman PHEI “Kyiv Medical University of the Ukrainian Association of Folk Medicine”, Ukraine
  • N. O. Horchakova Bogomolets National Medical University, Ukraine
  • P. V. Simonov Bogomolets National Medical University, Ukraine

DOI:

https://doi.org/10.24959/cphj.17.1422

Keywords:

nanoscience, nanostructures, biochemistry, mechanism of action

Abstract

Biologically active substances of an organism, colloids, and ion channels are nanosized. This is due to the fact that natural materials are characterized by an optimal structure that determines the maximum performance of their characteristic function with the minimal energy expenses. During millions of years of evolution the nature has developed an economical principle of constructing biological structures providing an effective and expedient relationship between their atoms, molecules, cells and organs, in particular strength, resistance, ability to interact with other objects, constant functioning of a huge number of not only organic, but also inorganic structures. In the process of evolution the irrational macro-, micro- and nanostructures or inefficiently functioning systems gradually disappeared as nature cannot use materials or processes that require the unreasonable energy expenses. The study of natural nanotechnologies in living systems is important since they are involved in physiological, biochemical, immunological processes of the body. The study of these unique characteristics of nanoparticles will allow developing new technologies for use in engineering, biology, medicine, physiology, agriculture, and other branches of the human activity. For physicians, pharmacologists, toxicologists, and pharmacists it is extremely important to determine the relationship between biochemical, physiological, and immunological processes in the human organism acting on the basis of nanoscale biologically active substances.

Author Biographies

I. S. Chekman, PHEI “Kyiv Medical University of the Ukrainian Association of Folk Medicine”

corresponding member of the NAS and NAMS of Ukraine, Doctor of Medicine (Dr. habil.), professor of the Department of
Pharmacology, Pathophysiology, Clinical Pharmacology and Clinical Pharmacy, Medicinal Technology

N. O. Horchakova, Bogomolets National Medical University

Doctor of Medicine (Dr. habil.), professor of the Pharmacology Department

P. V. Simonov, Bogomolets National Medical University

Candidate of Pharmacy (Ph.D.), teaching assistant of the Pharmacology Department

References

Anichkov, S. V. (1974). Izbiratelnoe deistvie mediatornykh sredstv. Moskva: Meditcina, 295.

Chekman, I. S. (2015). Fiziolohichnyi zhurnal, 61 (6), 129–138.

Medina, C., Santos–Martinez, M. J., Radomski, A., Corrigan, O. I., Radomski, M. W. (2009). Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology, 150 (5), 552–558. doi: 10.1038/sj.bjp.0707130

Andrievskii, R. A., Ragulia, A. V. (2005). Nanostrukturnye materialy. Moskva: Akademiia, 192.

Armstrong, C. T., Boyle, A. L., Bromley, E. H. C., Mahmoud, Z. N., Smith, L., Thomson, A. R., Woolfson, D. N. (2009). Rational design of peptide–based building blocks for nanoscience and synthetic biology. Faraday Discussions, 143, 305. doi: 10.1039/b901610d

Boisseau, P., Houdy, P., Lahmani, M. (2010). Nanoscience. Nanobiotechnology and nanobiology. Berlin, Heidelberg: Springer, 1200.

Deffeis, K., Deffeis, S. (2011). Udivitelnye nanostruktury. Moskva: Binom. Laboratoriia znanii, 206.

Suzdalev, I. P. (2006). Nanotekhnologiia: fiziko–khimiia nanoklasterov, nanostruktur i nanomaterialov. Moskva: KomKniga, 592.

Alberts, B., Johnson, A., Lewis, J. et al. (2008). Molecular biology of the cell. New York:Garland Publishing, 1601.

Holovenko, M., Larionov, V. (2008). Visnyk farmakolohii ta farmatsii, 4, 8–16.

Chekman, I.S., Ulberh, Z. R., Malanchuk, V. O. et al. (2012). Nanonauka, nanobiolohiia, nanofarmatsiia. Kyiv: Poligraf plius, 328.

Rieznichenko, L. S., Hruzina, T. H., Vember, V. V. (2007). Ukrainskyi biokhimichnyi zhurnal – The Ukrainian biochemical journal, 79 (4), 132–135.

Gao, Kh., Yao, Kh., Dzhi, D. (2009). Mir materialov i tekhnologii. Nanostrukturnye materialy. Moskva: Technosfera, 184–224.

Chekman, I.S. (2010). Likarska sprava, 7–8, 3–10.

Chekman, I.S. (2011). Nanofarmakolohiia. Кyiv: Zadruha, 424.

Bathe, M., Heussinger, C., Claessens, M. M. A. E., Bausch, A. R., Frey, E. (2008). Cytoskeletal Bundle Mechanics. Biophysical Journal, 94 (8), 2955–2964. doi:10.1529/biophysj.107.119743

Vallet–Regi, M., Arcos, D. (2008). Biomimetic nanoceramics in clinical use. From materials to applications.Cambridge: RSC Nanoscience & Nanotechnology, 173.

Strbak, O., Kopcansky, P., Frollo, I.(2011). Biogenic Magnetite in Humans and New Magnetic Resonance Hazard Questions. Measurement Science Review, 11 (3). doi: 10.2478/v10048–011–0014–1

Gruzina, T. G., Vember, V. V., Nemiro, S. A. et al. (2004). Dopovidi NAN Ukrainy, seriia «Biolohiia», 3, 154–158.

Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Linse, S. (2007). Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences, 104 (7), 2050–2055. doi: 10.1073/pnas.0608582104

Chekman, I.S., Simonov, P. V. (2011). Fiziolohichnyi zhurnal, 57 (6), 99–117.

Wheatley, D. N. (2008). Chapter 7 Nanobiology of the Primary Cilium—Paradigm of a Multifunctional Nanomachine Complex. Methods in Nano Cell Biology, 139–156. doi: 10.1016/s0091–679x(08)00807–8

Berger, M. (2009). Nano–society. Pushing the boundaries of technology.Cambridge: RSC Nanoscience & Nanotechnology, 317.

Shaefer, H. E. (2010). Nanoscience. The science of the small in physics, engineering, chemistry, biology and medicine. Berlin, Heidelberg : Springer, 772.

Hu, D. L., Chan, B., Bush, J. W. M. (2003). The hydrodynamics of water strider locomotion. Nature, 424 (6949), 663–666. doi: 10.1038/nature01793

Kowalczyk, S. W., Blosser, T. R., Dekker, C. (2011). Biomimetic nanopores: learning from and about nature. Trends in Biotechnology, 29 (12), 607–614. doi: 10.1016/j.tibtech.2011.07.006

Hou, X., Zhang, H., Jiang, L. (2012). Building Bio–Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie International Edition, 51 (22), 5296–5307. doi: 10.1002/anie.201104904

Li–Fries, J. (2007). Ion channels in mixed tethered bilayer lipid membranes. Johannes Gutenberg–UniversitätMainz, 140.

Bocquet, L., Charlaix, E. (2010). Nanofluidics, from bulk to interfaces. Chem. Soc. Rev., 39 (3), 1073–1095. doi: 10.1039/b909366b

Krishnamurthy, V., Monfared, S. M., Cornell, B. (2010). Ion channel biosensors – part I: construction, operation, and clinical studies. IEEE Transactions on Nanotechnology, 9 (3), 303–312. doi: 10.1109/tnano.2010.2041465

Published

2017-06-14

Issue

Section

Clinical Pharmacology and Pharmacotherapy