The effect of propoxazepam on development of thiosemicarbazide-induced GABA-deficient seizures in mice

M. Ya. Golovenko, A. S. Reder, V. B. Larionov, I. P. Valivodz`

Abstract


Aim. To study the mechanisms of action for propoxazepam, a new compound with the analgesic action, on the model of thiosemicarbazide-induced GABA-deficient seizures.

Matherials and methods. A chemoconvulsive agent was injected subcutaneously (20 mg/kg) 0.5 hours after intraperitoneal introduction of propoxazepam. The number and the time of appearance of different types of convulsions, as well as the relative number of survived animals (for ED50 calculation) were registered.

Results. The first seizure manifestations in animals began to appear at the first minute after thiosemicarbazide introduction (control), while introduction of propoxazepam already in the dose of 0.01 mg/kg increased this time up to 70 min. Against the background of propoxazepam introduction (0.1 mg/kg) there was an increase in the animals’ life duration up to 128 ± 16 min, with the doses above 0.3 mg/kg the survival was longer than 3-hour period of observation. The increase of the propoxazepam dose led to redistribution between the clonic and tonic convulsions. In the experimental groups there was a decrease in the time of occurrence of myoclonic convulsions and an increase in their number along with a reduction in the number of tonic convulsions. It indicates the increase in efficiency of inhibitory processes in the CNS.

Conclusions. The mean effective dose of propoxazepam as a protective effect on the model of thiosemicarbazide-induced seizures is 0.18 ± 0.10 mg/kg (0.31 ± 0.05 mmol/kg) with the “dose–effect” curve slope of 0.6 corresponding to the rapid development of the protective effect and antagonistic interactions at the receptor level.


Keywords


propoxazepam; thiosemicarbazide; convulsions; GABA-deficiency

Full Text:

PDF

References


Danilov, A. B., Davydov, O. S. (2007). Neiropaticheskaia bol.Moscow: Borges, 2007. – 198.

Pavlovsky, V. I., Tsymbalyuk, O. V., Martynyuk, V. S., Kabanova, T. A., Semenishyna, E. A., Khalimova, E. I., Andronati, S. A. (2013). Analgesic Effects of 3–Substituted Derivatives of 1,4–Benzodiazepines and their Possible Mechanisms. Neurophysiology, 45 (5–6), 427–432. doi: 10.1007/s11062–013–9389–y

Blommel, M. L., Blommel, A. L. (2007). Pregabalin: An antiepileptic agent useful for neuropathic pain. American Journal of Health–System Pharmacy, 64 (14), 1475–1482. doi: 10.2146/ajhp060371

Taylor, C. P., Gee, N. S., Su, T.–Z., Kocsis, J. D., Welty, D. F., Brown, J. P., Singh, L. (1998). A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Research, 29 (3), 233–249. doi: 10.1016/s0920–1211(97)00084–3

Golovenko, N. Ya., Golovenko, V. B., Reder, A. S. et al. (2016). Zhurnal Natcionalnoi akademii meditcinskikh nauk Ukrainy, 3, 247–252.

Roa, P. D., Tews, J. K., Stone, W. E. (1964). A neurochemical study of thiosemicarbazide seizures and their inhibition by amino–oxyacetic acid. Biochemical Pharmacology, 13 (3), 477–487. doi: 10.1016/0006–2952(64)90168–6

Urbakh, V. Yu. (1975). Statisticheskii analiz v biologicheskikh i meditcinskikh issledovaniiakh.Moscow: Meditcina, 297.

Panosyan, E. H., Lin, H. J., Koster, J., Lasky, J. L. (2017). In search of druggable targets for GBM amino acid metabolism. BMC Cancer, 17 (1). doi: 10.1186/s12885–017–3148–1

Ben–Menachem, E. (2011). Mechanism of action of vigabatrin: correcting misperceptions. Acta Neurologica Scandinavica, 124, 5–15. doi: 10.1111/j.1600–0404.2011.01596.x

Holovenko, M. Ya., Larionov, V. B., Reder, A. S. et al. (2017). Odeskyi medichnyi zhurnal, 6, 9–15.


GOST Style Citations


1.         Данилов, А. Б. Нейропатическая боль / А. Б. Данилов, О. С. Давыдов. – М. : Боргес, 2007. – 198 с.

2.        Analgesic Effects of 3–Substituted Derivatives of 1,4–Benzodiazepines and their Possible Mechanisms / V. I. Pavlovsky, O. V. Tsymbalyuk, V. S. Martynyuk et al. // Neurophysiol. – 2013. –Vol. 45, Issue 5–6. – P. 427–432. doi: 10.1007/s11062–013–9389–y

3.         Blommel, M. L. Pregabalin : An antiepileptic agent useful for neuropathic pain / M. L. Blommel, A. L. Blommel // Am. J. Health–Syst. Pharm. – 2007. – Vol. 64, Issue 14. – P. 1475–1482. doi: 10.2146/ajhp060371

4.         A summary of mechanistic hypotheses of gabapentin pharmacology / C. P. Taylor, N. S. Gee, S. Ti–Zhi et al. // Epilepsy Res. – 1998. – Vol. 29, Issue 3. – P. 233–249. doi: 10.1016/s0920–1211(97)00084–3

5.         Активация ГАМК–эргической системы пропилоксипроизводным 1,4–бенздиазепина на моделях нейропатической боли и судорог, индуцированных коразолом / Н. Я. Головенко, В. Б. Головенко, А. С. Редер и др. // Журн. НАМН Украины. – 2016. – № 3. – С. 247–252.

6.         Roa, P. D. A neurochemical study of thiosemicarbazide seizures and their inhibition by amino–oxyacetic acid / P. D. Roa, J. K. Tewes, W. E. Stone // Biochemical Pharmacology. – 1964. – Vol. 13, Issue 3. – P. 477–487. doi: 10.1016/0006–2952(64)90168–6

7.         Урбах, В. Ю. Статистический анализ в биологических и медицинских исследованиях / В. Ю. Урбах. – М. : Медицина, 1975. – 297 с.

8.         In search of druggable targets for GBM amino acid metabolism / E. H. Panosyan, H. J. Lin, J. Koster, J. L. Lasky // BMC Cancer. – 2017. – Vol. 17, Issue 1. – P. 162–171. doi: 10.1186/s12885–017–3148–1

9.         Ben–Menachem, E. Mechanism of action of vigabatrin : correcting misperceptions / E. Ben–Menachem // Acta Neurol Scand Suppl. – 2011. – Vol. 124. – P. 5–15. doi: 10.1111/j.1600–0404.2011.01596.x

10.       Метаболізм та екскреція похідного 3–пропілокси–1,4–бенздіазепіну при одноразовому та курсовому введеннях / М. Я. Головенко, В. Б. Ларіонов, А. С. Редер та ін. // Одеський мед. журн. – 2017. – № 6. – С. 9–15.





DOI: https://doi.org/10.24959/cphj.17.1419

Abbreviated key title: Klìn. farm.

ISSN 2518-1572 (Online), ISSN 1562-725X (Print)