Subunit compositions of GABAA receptors determining the diversity of physiological processes and neurotropic properties of medicines

Authors

DOI:

https://doi.org/10.24959/cphj.21.1541

Keywords:

GABAA-receptors, subunits, agonists, antagonists, benzodiazepines, propoxazepam

Abstract

Gamma-aminobutyric acid (GABA) became known as a potentially important chemical in the brain 50 years ago, but its significance as a neurotransmitter was fully found 16 years later. It is now known that at least 40 % of the inhibitory synaptic activity in the mammalian brain is accounted for by GABA. 

Аim. To analyze achievements in the study of the physiological and pharmacological role of GABA receptor subtypes, their potential applications in drug development and updated information on the clinical development of subtype-selective GABA receptor compounds. 

Results. The GABAA-receptor complex (GABA-RC) is ligand-gated ion channels with chloride conductance. These receptors contain α, β, and γ subunits, but δ, ε, θ, and ρ can be also present. The GABA binding site is located at the interface between α and β subunits where a number of important amino acids are also found. GABA-RC is sensitive to a wide range of drugs, e.g. benzodiazepines (BDZ), which are often used for their sedative/hypnotic and anxiolytic effects. Classical BDZ interact non-selectively with α1,3,5 βγ2 GABA-RС in the binding site located at the α+γ− interface. 

Conclusions.  In addition to the potent and rapid pharmacotherapeutic action BDZ also possess some addictive potential (drug dependence), which appears after the interaction of molecules with α1-receptors. Using the selective targeting to separate subgroups not only the main effect of BDZ without side effects can be provided, but also one can use this approach in creating new analgesic medicines; we have demonstrated it on the example of propoxazepam (full agonist GABA-R).

Author Biography

M.Ya. Golovenko, A. V. Bogatskiy Physicochemical Institute of the National Academy of Sciences of Ukraine

Doctor of Biology (Dr. habil.), professor, academician of the National Academy of Medical Sciences of Ukraine, leading researcher

References

Bormann, J. (2000). The “ABC” of GABA receptors. Trends Pharmacol. Sci, 21 (1), 16-19. doi: https://doi.org/10.1016/S0165-6147(99)01413-3.

Glykys, J., Mody, I. (2007). Activation of GABAA Receptors: Views from Outside the Synaptic Cleft. Neuron, 56 (6), 763-770. doi: https://doi.org/10.1016/j.neuron.2007.11.002.

Kuffler, S. W. (1954). Mechanisms of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol, 17, 558–574. Available at: https://pubmed.ncbi.nlm.nih.gov/13212426/.

Florey, E. (1954). An inhibitory and an excitatory factor of mammalian central nervous system, and their action on a singlesensory neuron. Arch. Int. Physiol, 62, 33–53. Available at: https://pubmed.ncbi.nlm.nih.gov/13149232/.

Krnjevic, K., Schwartz, S. (1967). The action of γ-aminobutyric acid on cortical neurones. Exp. Brain Res., 3 (4), 320–326. doi: 10.1007/BF00237558.

Smart, T. G., Stephenson, F. A. (2019). A half century of γ-aminobutyric acid. Brain and Neuroscience Advances, 3, 1–9. doi: https://doi.org/10.1177/2398212819858249.

Olsen, R. W., Tobin, A. J. (1990). Molecular biology of GABAA receptors. FASEB J, 4, 1469–1480. https://doi.org/310.1096/fasebj.4.5.2155149.

Haefely, W., Kulcsar, A., Mohler, H., Pieri, L., Polc, P., Schaffner, R. (1975). Possible involvement of GABA in the central actions of benzodiazepines. Adv. Biochem. Psychopharmacol, 14, 131–151.

Yogeeswari, P., Sriram, D., Vaigundaragavendran, J. (2005). The GABA Shunt: An Attractive and Potential Therapeutic Target in the treatment of epileptic disorders. Current Drug Metabolism, 6, 127-139. doi: https://doi.org/10.2174/1389200053586073.

Erlander, M. G., Tillakaratne, N. J. K., Feldblum, S., Patel, N., Tobin, A. J. (1991). Two genes encode distinct glutamate decarboxylases Neuron, 7, 91-100. doi: https://doi.org /10.1016/0896-6273(91)90077-d.

Roberts, E., Frankel, S. (1950). gamma-Aminobutyric Acid in Brain: Its Formation From Glutamic Acid. J. Biol. Chem., 187 (1), 55-63. doi: https://pubmed.ncbi.nlm.nih.gov/14794689/.

Erdö, S. L. (1992). Non-Neuronal GABA Systems: An Overview. GABA Outside the CNS. S. L. Erdö (Ed.). Berlin, Heidelberg: Springer, 97-110. doi: https://doi.org/10.1007/978-3-642-76915-3_7.

Sieghart, W. (1995). Structure and pharmacology of gamma-aminobutyric acid A receptor subtypes. Pharmacol. Rev., 47 (2), 181-234.

Brejc, K., van Dijk W. J., Klaassen, R. V., Schuurmans, M. J., van der Oost, J., Smit, A. B., Sixma, T. K. (2001). Crystal Structure of an ACh-binding Protein Reveals the Ligand-Binding Domain of Nicotinic Receptors, Nature., 411, 269-276. doi: https://doi.org /10.1038/35077011.

Ernst, M., Nelson, E. E., Jazbec, S., Monk, E. B., Leibenluft, C. S., Blair, J., Pine, D. S. (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage, 25, 1279–1291. doi: https://doi.org/10.1016/j.neuroimage.2004.12.038.

Coyle, J., Qamar, S., Rajashankar, R., Nikolov, B. (2002). Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron., 33 (1), 63-74. doi: https://doi.org/10.1016/S0896-6273(01)00558-X.

McLean, P. J., Farb, D. H., Russek, S. J. (1995). Mapping of the α4 subunit gene (GABRA4) to human chromosome 4 defines an α2-α4-β1-γ1 gene cluster: Further evidence that modern GABAA receptor gene clusters are derived from an ancestral cluster. Genomics, 26 (3), 580–586. doi: 10.1016/0888-7543(95)80178-o.

Olsen, R. W., Sieghart, W. (2008). International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Pharmacol Rev, 60 (3), 243-260. https://doi.org/10.1124/pr.108.00505.

Connolly, J. B., Roberts, I. J., Armstrong, J. D., Kaiser, K., Forte, M., Tully, T., O’Kane, C. J. (1996). Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science, 274, 2104-2107. https://doi.org/10.1126/science.274.5295.2104.

Klausberger, T., Marton, L. F., O’Neill, J., Huck, J. H. J., Dalezios, Y., Fuentealba, P. et al. (2005). Complementary roles of cholecystokinin‐ and parvalbumin‐ expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci., 25, 9782–9793. doi: https://doi.org/10.1523/JNEUROSCI.3269-05.2005.

Ernst, M., Brauchart, D., Boresch, S., Sieghart, W. (2003). Comparative modeling of GABAA receptors: limits, insights, future developments. Neuroscience, 119 (4), 933-943. doi: https://doi.org/10.1016/s0306-4522(03)00288-4.

Baumann, S. W., Baur, R., Sigel, E. (2002). Forced subunit assembly in alpha1beta2gamma2 GABAA receptors. Insight into the absolute arrangement. J. Biol. Chem., 277, 46020-46025. doi: https://doi.org/10.1074/jbc.M207663200.

Holden, J. H., Czajkowski, C. (2002). Different residues in the GABAA receptor alpha 1T60-alpha 1K70 region mediate GABA and SR-95531 actions. J. Biol. Chem., 277 (21), 18785-18792. doi: https://doi.org/10.1074/jbc.M111778200.

Wisden, W., Laurie, D. J., Monyer, H., Seeburg, P. H. (1992) .The distribution of GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci., 12, 1040-1062. doi: https://doi.org/10.1523/JNEUROSCI.12-03-01040.

Bergmann, R., Kongsbak, K., Sorensen, P. L., Sander, T., Balle, T. A. (2013). Unified model of the GABAA receptor comprising agonist and benzodiazepine binding sites. PLoS ONE, 8 (1), e52323. doi: https://doi.org/10.1371/journal.pone.0052323.

Connolly, C. N., Uren, J. M., Thomas, P., Gorrie, G. H., Gibson, A., Smart, T. G., Moss, S. J. (1999). Subcellular localization and endocytosis of homomeric gamma2 subunit splice variants of gamma-aminobutyric acid type A receptors. Mol Cell Neurosci, 13 (4), 259–271. doi: https://doi.org/10.1006/mcne.1999.0746.

Moragues, N., Ciofi, P., Tramu, G., Garret, M. (2002). Localisation of GABAA receptor ε-subunit in cholinergic and aminergic neurons and evidence for co-distribution with the θ-subunit in rat brain. Neuroscience, 111 (3), 657–669. doi: https://doi.org/10.1016/s0306-4522(02)00033-7.

Nusser, Z. (2000). AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr. Opin. Neurobiol, 10 (3), 337-541. doi: https://doi.org/10.1016/s0959-4388(00)00086-6.

Saxena, N. C., Macdonald, R. L. (1994). Assembly of GABAA receptor subunits: role of the γ subunit. J. Neurosci, 14 (11), 7077-7086. doi: https://doi.org/10.1523/JNEUROSCI.14-11-07077.1994.

Farrant, M., Nusser, Z. (2005). Variations on an Inhibitory Theme: Phasic and Tonic Activation of GABA(A) Receptors. Nat Rev Neurosci, 6 (3), 215-29. doi: https://doi.org/10.1038/nrn1625.

Enna, S. J., McCarson, K. E. (2006). The role of GABA in the mediation and perception of pain. Adv Pharmacol, 54, 1-27. doi: https://doi.org/10.1016/s1054-3589(06)54001-3.

Bohlhalter, S., Weinmann, O., Mohler, H., Fritschy, J. M. (1996). Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an lmmunohistochemical study. Neuroscience, 16 (1), 283-297. doi: https://doi.org/10.1523/JNEUROSCI.16-01-00283.1996.

Belelli, D., Lambert, J. J. (2005). Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci, 6, 565-575. https://doi.org/10.1038/nrn1703.

Sigel, E., Lüscher, B. P. (2011). A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Curr. Top Med. Chem., 1, 241-246. doi: https://doi.org/ 10.2174/156802611794863562.

Sieghart, W. (2006). Structure, pharmacology, and function of GABAA receptor subtypes. Adv. Pharmacol, 54, 231-263. doi: https://doi.org/10.1016/s1054-3589(06)540104.

Bohatskii, A. V., Andronati, S. A. (1970). The Present State of the Chemistry of 1,4-Benzodiazepines. Uspekhi khimii. 39 (12), 2217-2255. doi: https://doi.org/10.1070/RC1970v039n12ABEH002327.

Bohatskii, A. V. Andronati, S. A., Golovenko, N. Ya. (1980). Trankvilizatory (1,4-benzdiazepiny i rodstvennye struktury. Kiev: Nauk. dumka, 280.

Kelly, M. D., Smith, A., Banks, G. (2002). Role of the histidine residue at position 105 in the human alpha 5 containing GABA(A) receptor on the affinity and efficacy of benzodiazepine site ligands. Br J Pharmacol, 135 (1), 248-256. doi: https://doi.org/10.1038/sj.bjp.0704459.

Charlotte, A. E., Christian, H. R. (1997). Receptors via a flunitrazepam-binding site flunitrazepam has an inverse agonistic effect on recombinant alpha6beta2gamma2-GABAA receptors via a flunitrazepam-binding site. J. Biol. Chem., 272 (18), 11723-11727. doi: https://doi.org/10.1074/jbc.272.18.11723.

Miller, L. G., Galpern, W. R., Byrnes, J. J., Greenblatt, D. J. (1992). Benzodiazepine receptor binding of benzodiazepine hypnotics: receptor and ligand specificity. Pharmacology Biochemistry and Behavior, 43 (2), 413-416. doi: https://doi.org/10.1016/0091-3057(92)90170-k.

Löw, K., Crestani, F., Keist, R. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science, 290 (5489), 131–134. doi: https://doi.org/ 10.1126/science.290.5489.131.

Rudolph, U., Möhler, H. (2014). GABAA receptor subtypes: therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharmacol Toxicol, 54, 483–507. doi: https://doi.org/10.1146/annurev-pharmtox-011613-135947.

Sternfeld, F., Carling, R.W., Jelley, R. A. (2004). Selective, orally active γ-aminobutyric acidA α5 receptor inverse agonists as cognition enhancers. J. Med. Chem, 47 (9), 2176-2179. doi: https://doi.org/10.1021/jm031076j.

Krogsgaard-Larsen, P., Frolund, B., Liljefors, T., Ebert, B. (2004). GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol, 68 (8), 1573-80. doi: https://doi.org/10.1016/j.bcp.2004.06.040.

Chambers, M. S., Atack, J. R., Carling, R. W. (2004). An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. J Med Chem, 47 (24), 5829-5832. doi: https://doi.org/10.1021/jm040863t.

Knabl, J., Witschi, R., Hösl, K. (2008). Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature, 451, 330–334. doi: https://doi.org/10.1038/nature06493.

Golovenko, N. Ya., Voloshchuk, N. I., Andronati, S. A., Taran, I. V., Reder, А. S., Pashynska, О. S., Larionov, V. B. (2018). Antinociception induced by a novel benzodiazepine receptor agonist and bradykinin receptor antagonist in rodent acute and chronic pain models. European Journal of Biomedical and Pharmaceutical sciences, 5 (12), 79-88. Available at: https://www.ejbps.com/ejbps/abstract_id/5227.

Golovenko, N. Ya., Kabanova, T. A., Andronati, S. A., Khalimova, O. I. Larionov, V. B., Reder, А. S. (2020). Antiinflammatory effects of propoxazepam on different models of inflammation. International Journal of Medicine and Medical Research, 5 (2), 105-112. doi: https://doi.org/10.11603/ijmmr.2413-6077.2019.2.10900.

Golovenko, N. Ya., Larionov, V. B., Reder, A. S., Valivodz, I. P. (2017). An effector analysis of the interaction of propoxazepam with antagonists of GABA and glycine receptors. Neurochemical Journal, 11 (4), 302–30. doi: https://doi.org/10.1134/S1819712417040043.

Enna, S. J., McCarson, K. E. (2006). The role of GABA in the mediation and perception of pain. Adv Pharmacol, 54, 1–27. doi: https://doi.org/10.1016/s1054-3589(06)54001-3.

Golovenko, M. Ya., Belenichev, I., Larionov, V., Reder, A. S., Andronati S. А. (2020). Physiological aspects of rat activity, their anxiety and memory after administration of full gabaa-receptor complex agonist propoxazepam. ScienceRise:Biological Science, 2 (23), 42-48. doi: https://doi.org/10.15587/2519-8025.2020.207368.

Published

2021-02-26

Issue

Section

Clinical Pharmacology and Pharmacotherapy